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ABOUT THIS DOCUMENT 
The evaluation of transfer functions measured in the course of an experimental modal 
analysis requires special analysis software. This software can be used to determine 
the modal parameters of test structures and to obtain important information on their 
dynamic behavior. The software applications are based on various calculation 
methods. 

This document provides  
• a short introduction to modal analysis 
• background information on the calculation method used in the ArtemiS SUITE 

Modal Analysis Project and its implementation 
• application examples that provide an insight into the operation and potential of 

the algorithm used 

The document is particularly intended for readers who are interested in learning more 
about the technical background and the possibilities of modal analysis with ArtemiS 
SUITE. The description of the available tools and their application can be used to 
evaluate the benefit for one’s own task and the applicability in everyday work. 

  

Topic / Starting point 

Content 

Target group 



08/12/2022  2 
 

CONTENT 

1 INTRODUCTION 3 

2 PARAMETER EXTRACTION: LEAST-SQUARES- COMPLEX-FREQUENCY 
 METHOD (LSCF) 5 

3 PRACTICAL APPLICATION 7 

 EXAMPLE 1: TORQUE ARM OF AN ELECTRIC VEHICLE (EV) 7 
 EXAMPLE 2: POWERTRAIN OF AN ELECTRIC VEHICLE 14 

4 REFERENCES 17 

 

  



08/12/2022  3 
 

1 INTRODUCTION 
The aim of the Experimental Modal Analysis (EMA) is to determine the structural 
dynamic properties of a real structure. This can be used, for example, 

• to find the cause of sound and vibration problems and to optimize the 
transmission paths 

• to localize weak points of a structure with respect to dynamic loads and 
evaluate different approaches on how to remedy them 

• to validate or parametrize numerical calculation methods 

The basis for modal analysis is the set of measured 
transfer functions. A transfer function describes the 
measured relationship between an excitation force 
and the vibration it causes at a point of the structure. 
The modal parameters are then extracted from the 
transfer functions: the natural frequencies, the modal 
damping and the corresponding mode shapes. In 
combination, these parameters provide a deeper 
understanding of the structural dynamic behavior.  

Many different algorithms were developed in the past to assist the user in 
extracting modal parameters. The Modal Analysis Project in ArtemiS SUITE 
uses an implementation based on the Least-Squares-Complex-
Frequency method (LSCF method). Figure 1 shows the role of the 
LSCF method within modal analysis. The LSCF method requires the 
measured transfer functions as input data. In addition, suitable setting parameters for 
the LSCF method must be defined to achieve an optimal result. The output 
parameters are the so-called poles, which can be used to determine the modal 
parameters (natural frequencies, modal dampings and mode shapes).  

 

Figure 1:  Overview of the LSCF method and its role in modal analysis 

The following chapter explains in excerpts the theoretical background of the LSCF 
method, its setting parameters and its output quantities. The third chapter 
supplements the theoretical explanations with application examples from the user’s 
point of view.   

Experimental Modal Analysis 

Determination of the modal 
parameters 

The LSCF algorithm 
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Selecting the LSCF method as the basis for implementation in the ArtemiS SUITE 
Modal Analysis Project was based, among other things, on its versatility. It is suitable, 
for example, for 

• applications with a wide frequency range 
• structures with poles that lie close together in the transfer functions 
• a wide damping range 

Due to its versatility, the LSCF method provides good results for a wide range of 
applications. There are special algorithms for some applications that could provide 
even more accurate results, but to use them, the user must have extensive 
specialized knowledge to select and correctly parametrize the algorithm that is exactly 
the right one for their respective application. The versatility of the implemented method 
offers many advantages, especially for users who are not familiar with the various 
different algorithms and their advantages and disadvantages. In addition, it is 
particularly efficient, because it has been optimized with regard to both memory 
requirements and computing time. 

  

Advantages of the LSCF-
algorithm 
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2 PARAMETER EXTRACTION: LEAST-SQUARES- 
COMPLEX-FREQUENCY METHOD (LSCF) 

Initially, the Least-Squares-Complex-Frequency method (LSCF method) was 
developed to calculate the initial values for another pole extraction algorithm [2]. It 
soon turned out, however, that the poles determined by the LSCF method were 
already quite accurate and did not require further optimization. Since that time, the 
LSCF method and its multi-reference implementation (Poly LSCF) presented in [1] 
have established standards in terms of robustness and speed and have been used in 
a variety of modal analysis programs with slight modifications and different names.  

The following is a simplified presentation of the basic features of the algorithm. Please 
refer to more detailed literature for complete information on the implementation [1], [3].  

The ratio of excitations and responses is described by the matrix of the measured 
transfer functions 𝐻𝐻�(𝜔𝜔)𝜖𝜖 ∁𝑁𝑁𝑜𝑜𝑥𝑥𝑁𝑁𝐼𝐼 with 𝑁𝑁𝑜𝑜 = number of responses and 𝑁𝑁𝐼𝐼= number of 
excitations. It is assumed that the matrix of the transfer functions can be approximated 
by the following equation: 

𝐻𝐻�(𝜔𝜔) = 𝑁𝑁(𝜔𝜔) ∙ 𝐷𝐷−1(𝜔𝜔) 

In this case, 𝑁𝑁(𝜔𝜔)𝜖𝜖∁𝑁𝑁𝑂𝑂𝑥𝑥𝑁𝑁𝐼𝐼 is called the numerator matrix polynomial and 𝐷𝐷(𝜔𝜔)𝜖𝜖∁𝑁𝑁𝐼𝐼𝑥𝑥𝑁𝑁𝐼𝐼 
the denominator matrix polynomial. The following applies to each row of the matrix of 
transfer functions: 

𝐻𝐻�𝑖𝑖(𝜔𝜔) = 𝑁𝑁𝑖𝑖(𝜔𝜔) ∙ 𝐷𝐷−1(𝜔𝜔) 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑂𝑂 

The numerator polynomial is described by the following formula: 

𝑁𝑁𝑖𝑖(𝜔𝜔) = �𝐵𝐵𝑖𝑖𝑖𝑖Ω𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=0

 
𝐵𝐵𝑖𝑖𝑖𝑖𝜖𝜖𝑅𝑅1𝑥𝑥𝑁𝑁𝐼𝐼 

While 𝑛𝑛 denotes the model size and thus is an input value of the algorithm, Bij are the 
polynomial coefficients of the numerator polynomial. The larger the model size 
chosen, the more degrees of freedom the modal model has. Each degree of freedom 
allows to approximate/detect a resonance in the transfer functions. If the model size is 
chosen too small, it prevents the modal model from approximating the system with 
sufficient accuracy. On the other hand, a large model size results in a longer 
computation time, since a large model size increases the size of the matrices used in 
the algorithm.  

In the equation above, Ω denotes the polynomial basis function: 

Ω𝑖𝑖(𝜔𝜔) = 𝑒𝑒𝑖𝑖𝑗𝑗Δ𝑡𝑡𝑖𝑖  

The denominator polynomial has the following form: 

𝐷𝐷(𝜔𝜔) = �𝐴𝐴𝑖𝑖Ω𝑖𝑖(𝜔𝜔)
𝑛𝑛

𝑖𝑖=0

 
𝐴𝐴𝑖𝑖𝜖𝜖𝑅𝑅𝑁𝑁𝐼𝐼𝑥𝑥𝑁𝑁𝐼𝐼 

 

Here, Aj are the polynomial coefficients of the denominator polynomial. A linearized 
Least Squares Estimation leads to the polynomial coefficients.  

Development of the LSCF 
method 

Matrix of the transfer functions 

Calculation of the numerator 
polynomial 

Calculation of the denominator 
polynomial 
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Using the coefficients of the denominator polynomial Aj, the so-called Companion 
Matrix can be formed: 

𝐴𝐴𝐶𝐶 = �

𝐴𝐴′𝑛𝑛−1 … 𝐴𝐴′1 𝐴𝐴′0
𝐼𝐼 … 0 0
⋮ ⋮ ⋮ ⋮
0 … 𝐼𝐼 0

� 
𝐴𝐴′𝑖𝑖 =  − 𝐴𝐴𝑛𝑛−1𝐴𝐴𝑖𝑖   

𝐼𝐼 =  𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚 

The eigenvalues of the companion matrix are called the poles of the modal model. 
The eigenvectors are used to derive the so-called modal participation factors. The 
poles are related to natural frequency and damping as follows: 

𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑟𝑟∗ =  −𝜉𝜉𝑟𝑟𝜔𝜔𝑟𝑟 ± 𝑗𝑗𝜔𝜔𝑟𝑟�1 − 𝜉𝜉𝑟𝑟2 ∗= 𝑐𝑐𝑐𝑐𝑛𝑛𝑗𝑗𝑐𝑐𝑐𝑐𝑚𝑚𝐼𝐼𝑒𝑒 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝑚𝑚 
𝜉𝜉 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐 𝑚𝑚𝑚𝑚𝐼𝐼𝑖𝑖𝑐𝑐 

𝜔𝜔𝑟𝑟 = 𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑛𝑛 𝑚𝑚𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑒𝑒𝑓𝑓𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝐼𝐼 [𝑚𝑚𝑚𝑚𝐼𝐼/𝑠𝑠] 

The calculation is performed iteratively with an increasing model size n until the 
maximum model size defined by the user is reached. Afterwards, the stability plot (see 
Figure 7) is used to determine how the poles behave over the iterations and to what 
extent the results fluctuate over the iterations. Besides fundamental inaccuracies due 
to the quality of the measured data, these fluctuations in the identified poles can be 
attributed to an insufficient model size. With too small a model size, the algorithm has 
too few degrees of freedom to identify all poles. In this case, the identified poles have 
to compensate the influences of the unidentified poles and thus show wrong values 
which are subject to strong fluctuations. From the iteration where all physically existing 
poles are actually found, the fluctuation in the parameters of the poles decreases and 
they are identified as stable with suitably chosen boundary conditions (compare 
page 9).  

A minimum number of “similar” poles is required as a boundary condition of the 
selection process. If this number is reached, a pole is considered stable. In addition, 
similarity criteria for the damping ratio and the frequency must be specified. These 
criteria are used to select the poles.  

Knowing the poles, the measured transfer functions can be approximated by the 
following formula. 

�
𝐻𝐻1(𝜔𝜔)
⋮

𝐻𝐻𝑁𝑁𝑂𝑂(𝜔𝜔)
� = ��

Φ𝑟𝑟𝐿𝐿𝑟𝑟𝑇𝑇

𝑗𝑗𝜔𝜔 −  𝜆𝜆𝑟𝑟
+ 

Φ𝑟𝑟
∗𝐿𝐿𝑟𝑟𝐻𝐻

𝑗𝑗𝜔𝜔 −  𝜆𝜆𝑟𝑟∗
�

𝑁𝑁𝑚𝑚

𝑟𝑟=1

−  
𝐿𝐿𝑅𝑅
𝜔𝜔2 + 𝑈𝑈𝑅𝑅 

 

LR (Lower Residual) and UR (Upper Residual) include the influences of modes 
outside the limits of the considered frequency range. With the poles 𝜆𝜆𝑟𝑟 and the modal 
participation factors 𝐿𝐿𝑟𝑟 being known from the eigenvalues and eigenvectors of the 
companion matrix, the eigenmodes Φ𝑟𝑟 as well as the lower and upper residuals are 
the only unknowns and can be determined using the least-squares approach. Thus, 
the modal model of the measured structure including all modal parameters (natural 
frequencies, damping ratios, eigenmodes) is derived. 

Companion Matrix 

Stability plot 

Approximation of the transfer 
functions 
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3 PRACTICAL APPLICATION 

EXAMPLE 1: TORQUE ARM OF AN ELECTRIC VEHICLE (EV) 
The following describes the experimental modal analysis of the torque arm of an EV 
using ArtemiS SUITE. This analysis aims at validating the results of a numerical modal 
analysis. For this purpose, different tools are used: 

• Measurement Point Library 
• Impact Measurement 
• Modal Analysis Project 
• Shape Comparison Project 

For the measurements of the transfer functions, the torque arm is removed and 
suspended from a rubber cord with the aid of a nylon thread glued to it in order to 

approximate free vibration 
behavior. The measurements 
are carried out with the „Roving 
Hammer“ method: To do this, 
the structure is struck with a 
hammer at various positions. 
The structural response is 
measured with an accelerometer 
at a fixed position. This has the 
advantage that the mass 
influence of the sensors does 
not change between the 
individual measurements. 

Measurements and analyses in ArtemiS SUITE are based on the 
Measurement Point Library. This library generally lists all the measurement 
points that are measured or excited. In addition, a 3D model of the 

measurement object can be loaded into the Measurement Point Library. Such a 3D 
model (e.g., taken from a CAD program) then provides additional model points 
describing the geometry of the measurement more precisely. 

 

Figure 3:  Representation of the measurement and model points of the torque arm in the 
Measurement Point Library 

Measurement setup torque arm 

Measurement Point Library 

Reference 

Figure 2:        Measurement set-up torque arm 
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The measurements are carried out with the Impact Measurement (Roving 
Hammer) function. In this example, the impact hammer is used to excite the 
torque arm at 22 measurement points in two or three spatial directions. The 

system response is measured at a reference point in uniaxial direction. A total of 51 
transfer functions are determined for this example. The impact hammer measurement 
of ArtemiS SUITE assists the user in setting parameters (e.g., sampling rate, window 
length and window function) and guides them, step by step, through all measurement 
points defined in the measurement point list.  

After the measurements have been completed, the actual modal analysis is 
carried out in the Modal Analysis Project. In this project, the measurement-
based transfer functions are analyzed and the modal parameters are 

determined. After opening the Modal Analysis Project for the first time, the 
Measurement Point Library and the corresponding transfer functions must be 
selected. Figure 4 shows the Modal Analysis Project for the torque arm example after 
the first opening. 

 

Figure 4:  User interface modal analysis  

If data of a measurement with several reference points are available, these can be 
selected or deselected for the evaluation if necessary (Multi Reference). Afterwards, 
the frequency range for the modal analysis is defined. In this example, the frequency 
range from approximately 500 Hz to approximately 7000 Hz is to be investigated.  

Next, the model size for the pole calculation is set (Highest Model Size, see Figure 5). 
This parameter determines the maximum degree of the polynomial from whose 
coefficients the companion matrix is formed (see page 6). The formation of the 
companion matrix and the calculation of its eigenvalues is done iteratively with 
continuously increasing model size up to the maximum model size defined by the 
user. As an alternative to manual input by the user, the modal analysis project 
provides a neural network to determine these values automatically on the basis of the 
measurement data [4]. 

Impact hammer measurement  

Modal Analysis Project 

Reference point(s) and 
frequency range 

Determination of model size 



08/12/2022  9 
 

 

Figure 5:  Parameters for pole calculation that were used for the present example 

The higher this value, the more degrees of freedom are available and the more 
eigenvalues, also called poles, are found by the algorithm. However, a higher number 
of iterations can also cause undesired effects. If the model size is too large in relation 
to the real poles, there might also be poles found in the interfering parts (e.g., caused 
by noise) of the transfer functions. In addition, the calculation time will increase the 
more iterations are calculated and the more complex the model is.  

The result for each model size (iteration) consisting of frequency and damping is 
passed to the stability plot. This plot shows how much the results vary over the 
iterations. For this purpose, the similarity of the poles is evaluated on the basis of 
parameters defined by the user. This results in the colored poles in the stability plot 
(see Figure 6). The colors of the dots provide information on their stability related to 
the different iterations: 

• A red dot represents an unstable 
pole whose frequency and 
damping vary significantly at 
different iterations.  

• If the pole is colored yellow, the 
frequency varies within specified 
tolerances at different iterations, 
but the damping shows significant 
deviations.  

• A green dot indicates a stable 
pole whose frequency and 
damping remain within the 
specified tolerances at different 
iterations. 

The value Minimum Stable Poles per Mode allows the user to define when a pole is 
displayed as stable in the stabilization plot. The value determines the minimum 
number of iterations for which a pole must meet certain tolerances regarding 
frequency and damping. The user specifies the tolerances for the similarity of poles by 
using the values Frequency tolerance and Damping Tolerance. When checking the 
stability of the poles, the algorithm first examines the frequency deviation, and then 
the deviations in the damping. 

  

Stability plot 

Parameters for pole evaluation  

Figure 6: Stability plot with poles marked in color 
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Calculating the poles results in the stability plot shown in Figure 7. 

   

Figure 7:  Stability plot for the torque arm modal analysis  

Some of the poles found are shown enlarged. These mark the poles on the basis of 
which the curve fitting for approximating the transfer functions is performed. In addition 
to the measured transfer functions colored green, the transfer function approximated 
by the curve fitting is shown in red after the calculation.  

In the first approach, the Modal Analysis Project first selects the poles from the 
iteration with the smallest deviations in pole frequencies for curve fitting. For this 
purpose, only stable poles are used. The horizontal auxiliary line makes it easier to 
read off the model size used in the process (see, for example, the horizontal line in 
Figure 7 labeled “96”). Scrolling through the various transfer functions allows a visual 
comparison between the approximated and the measured transfer functions (see 
Figure 8).  

 

 

 

 

         

Figure 8:  Comparison between the measured and the approximated transfer functions  

Stability plot torque arm 

Comparison of the measured 
and approximated transfer 

functions 
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The two curves should match well, especially at the maxima. If this is the case, the 
poles are well selected for curve fitting. If this is not the case, the selection of the poles 
needs to be adjusted. In most cases, the poles automatically selected by the Modal 
Analysis Project already provide a very good basis for curve fitting, thus ensuring a 
good match between the measured and the approximated transfer functions. 
Therefore, the preselected poles can usually be used without any adjustments.  

As a next step, the calculated eigenmodes with natural frequency and damping are 
therefore inserted into the mode shape table for further investigations. In addition to 
the modal parameters frequency and damping, the MPC value (Modal Phase 
Collinearity) for each eigenmode is also specified in this table (see Figure 9).  

The MPC value can be used as a tool to check the quality of the calculated 
eigenmodes. It describes the phase collinearity of the measured points at a certain 
frequency. The MPC value has a value range from 0 to 1, with 1 representing a high 
phase collinearity of the measurement points, i.e., the measurement points oscillate in 
phase or by 180° in opposite directions. The greater the phase differences of the 
measurement points, the more the value tends towards 0.  

 

 

Figure 9:  Mode shape table for torque arm modal analysis  

A high MPC value is a first indication that the extracted eigenmode exists in reality. On 
the other hand, a low MPC value is not an immediate exclusion criterion. Eigenmodes 
with a low MPC value should neither be deleted from the mode shape table without 
checking, nor be excluded from the subsequent evaluation. Instead, modes with low 
MPC values should be checked individually by the user. In the present example, the 
eigenmode at 1844 Hz has a very low MPC value of 0.148. This mode could not be 
optimally excited and measured with the measurement setup used. However, a 
resonance peak at this frequency can be detected in all transfer functions. With the 
selected poles, however, the phase progression for this eigenmode could not be 
approximated well for all transfer functions. This causes the motion of some points not 
to be in the correct phase relation to the other measurement points and thus leads to a 

Mode shape table 

MPC value 

Evaluation of the calculated 
eigenmodes 
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collapse of the MPC value. In order to check this, the phase can also be displayed in 
the stability plot. Figure 10 shows the amplitude and phase for the eigenmode at 1844 
Hz as an example for a measurement point with a large phase deviation.  

 

Figure 10:  Calculated and approximated amplitude and phase at 1844 Hz  

Since there is a peak at frequency 1844 Hz in all transfer functions, the corresponding 
frequency should be left as a natural frequency in the mode shape table. However, the 
calculated eigenmode of this frequency is subject to errors and must be examined 
critically. This is confirmed by a numerical simulation carried out later for the torque 
arm: this natural frequency is also found in the simulation, but the eigenmode has a 
different form.  

The results of the modal analysis are the specifications in the mode shape table on 
natural frequency and damping for the calculated eigenmodes. These can be further 
investigated, for example, in the Shape Comparison Project. 

In the Shape Comparison Project, the results from a mode shape table can 
either be compared with themselves or with the results of another 
calculation or simulation. The Shape Comparison Project automatically 

displays an (auto)MAC matrix for this comparison. The Modal Assurance Criterion 
(MAC) is a mathematical comparison method based on the evaluation of the 
eigenmodes in terms of the complex eigenvectors. Each matrix is a measure of the 
matching between the eigenvectors. If the eigenvectors match, the matrix element is 
equal to 1. If the two eigenvectors are orthogonal to each other, it is 0. The (auto)MAC 
matrix compares the eigenvectors of a modal model with itself and has as many 
columns and rows as there are eigenvectors in the loaded mode shape table.  

In an (auto)MAC matrix, the values of the diagonals always have the value 1, because 
here the respective eigenvector is compared with itself. The values off the diagonals 
should be close to 0. If high values occur off the diagonals, this is an indication that 
the modal model describes reality inadequately. The reason for this is an insufficient 
geometric resolution of the measurement grid for the measurement task. As a result, 
information is not captured and the respective eigenvectors are incomplete and too 
similar. If a numerical model is available, the (auto)MAC matrix can be used to 
determine the optimal geometric resolution of the measurement grid before the 
measurement. By iteratively evaluating the (auto)MAC for models with an increasing 
number of virtual measurement points, it is possible to determine the resolution that is 
necessary to capture all required information.  

Shape Comparison Project 

Evaluation of the (auto)MAC 
matrix 
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The (auto)MAC matrix for the torque arm eigenmodes is shown in Figure 11. It shows 
the targeted high values in the diagonal. The other values are sufficiently low. 

 

Figure 11:  (auto)MAC matrix for the calculated torque arm eigenmodes  

Next, the results from the experimental modal analysis in the Shape Comparison 
Project can be compared with the results of a numerical simulation, for example. For 
this purpose, in addition to the mode shape table from the Modal Analysis Project, the 
one from a numerical simulation is loaded and the MAC matrix is calculated. The 
result is shown in Figure 12. The MAC values decreasing with higher frequencies are 
caused by the fact that with increasing frequencies small differences in the positioning 
of the real and virtual sensors have an increasing influence. Furthermore, as 
expected, a worse matching can be seen at the frequency of 1844 Hz, because the 
corresponding eigenmode could not be accurately depicted by the modal model (cf. 
page 11f).  

 

Figure 12:  MAC matrix for the comparison of experimental (A) and numerical data (B) 

Comparison with results from 
simulation  
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Overall, the comparison shows a good matching between the results of the 
experimental modal analysis and those of the simulation performed with the finite 
element method. 

 

EXAMPLE 2: POWERTRAIN OF AN ELECTRIC VEHICLE 
This section briefly presents the implementation and results of a modal analysis for the 
powertrain of an electrically driven passenger car. In this case, the focus of the 

experimental modal 
analysis was to gain 
knowledge about the 
structural dynamic 
properties of the 
powertrain. Figure 13 
shows the powertrain 
mounted on the test 
rig from above.  

 

 

 

 

 

 
The system response of the powertrain was recorded with 37 triaxial accelerometers. 
The excitation was done with an impact hammer (steel tip) at four different points 
normal to the surface. The 3D model used and the different sensor positions are 
shown in Figure 14. 

 
 

 

 

Figure 14:  3D model of the powertrain including sensor positions (left: front view, right: rear view) 

 

Measurement setup powertrain  

Figure 13:  Powertrain of the E-vehicle mounted on the test rig 

Fahrtrichtung 
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Thus, for this example, a much higher number of channels was recorded than in the 
torque arm example. This, combined with the four reference points, results in a higher 
number of transfer functions. The modal analysis of the powertrain is thus significantly 
more complex. 

The evaluation of the measurements in the Modal Analysis Project was carried out in 
several steps: pole calculations were performed for different frequency ranges with 
parameter settings matched to them. In addition, the poles were determined using 
transfer functions with different reference points.  

 

Figure 15:  Analysis of the powertrain in the Modal Analysis Project 

Figure 16 shows three of the eigenmodes found. While the eigenmode at 276 Hz is 
dominated by the motion of the motor support arms, the eigenmode at 1352 Hz shows 
an ovalization of the electric motor housing. At 2507 Hz, the motion of the torque arm 
dominates. Thus, modes were extracted in a wide frequency range that are dominated 
by different parts of the structure. 

 

Evaluation in the Modal 
Analysis Project 

Calculated eigenmodes  
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Figure 16:  Eigenmodes of the powertrain (left: 276 Hz, middle: 1352 Hz, right: 2553 Hz rear view) 

The results of these calculations were collected in the mode shape table of the Modal 
Analysis Project and, taking into account various evaluation factors (e.g., MPC values, 
comparison of the measured and approximated transfer functions, consideration of the 
calculated eigenmodes), a selection of 31 eigenmodes for a frequency range of 230-
2600 Hz was made. 

The (auto)MAC matrix was then determined for this selection in the Shape 
Comparison Project (see Figure 17). It shows the targeted high values on the 
diagonal. The other values are sufficiently low. 

 

Figure 17:  (auto)MAC matrix of the eigenmodes from the modal analysis in the Shape Comparison 
Project 

Evaluation in the Shape 
Comparison Project  
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The measurement data shown were recorded as part of a 
sponsored research project on a test rig at the Institute for 
Machine Elements and System Development at RWTH 
Aachen University, Germany.  
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